Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro.
نویسندگان
چکیده
The retroviral integrase (IN) protein is essential for integration of retroviral DNA into the host cell genome. To identify functional domains within the protein and to assess the importance of conserved residues, we performed site-directed mutagenesis of HIV-1 IN and analyzed the mutants in vitro for IN-mediated activities: 3' processing (att site-specific nuclease activity), strand transfer (the joining of att site oligonucleotides to target DNA), disintegration (the reverse of strand transfer), and integration site selection. Changing the conserved residue His-16 either to Cys or to Val in a proposed zinc-finger region had minimal effect on IN activities. Alteration of two highly conserved amino acid residues, Asp-116-->Ile and Glu-152-->Gly, each resulted in complete or nearly complete loss of 3' processing, strand transfer, and disintegration, whereas alteration of another conserved residue, Trp-235-->Glu, had no demonstrable effect on any of the activities in vitro. Two mutants, Asp-64-->Val and Arg-199-->Cys delta, each demonstrated differential effects on IN activities. Asp-64-->Val has no demonstrable strand transfer or disintegration activity yet maintains 3' processing activity at a diminished level. Arg-199-->Cys delta, which lacks part of the carboxyl terminus of IN, has impaired strand transfer activity without loss of disintegration activity. Use of a target site selection assay showed that all of our mutants with strand transfer activity maintain the same integration pattern as wild type IN. We conclude that not all highly conserved IN residues are essential for IN activities in vitro, zinc coordination by the proposed zinc-finger domain may not be required for the activities assayed, alteration of single residues can yield differential effects on IN activities, and target site selection into naked DNA is not necessarily altered by changes in strand transfer activity.
منابع مشابه
Heterogeneity in recombinant HIV-1 integrase corrected by site-directed mutagenesis: the identification and elimination of a protease cleavage site.
Purified recombinant human immunodeficiency virus type 1 (HIV-1) integrase and certain deletion mutants exhibit heterogeneity consistent with proteolysis at a site close to the C-terminus. Electrospray ionization mass spectrometric analysis indicated that proteolytic cleavage generated a protein missing five residues from the C-terminus. PCR mutagenesis of amino acids on either side of the clea...
متن کاملThree Main Mutational Pathways in HIV-2 Lead to High-Level Raltegravir and Elvitegravir Resistance: Implications for Emerging HIV-2 Treatment Regimens
Human immunodeficiency virus type 2 (HIV-2) is intrinsically resistant to non-nucleoside reverse transcriptase inhibitors and exhibits reduced susceptibility to several of the protease inhibitors used for antiretroviral therapy of HIV-1. Thus, there is a pressing need to identify new classes of antiretroviral agents that are active against HIV-2. Although recent data suggest that the integrase ...
متن کاملMultiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication.
The integration of a DNA copy of the human immunodeficiency virus type 1 (HIV-1) genome into a chromosome of an infected cell is a pivotal step in virus replication. Integration requires the activity of the virus-encoded integrase, which enters the cell as a component of the virion. Results of numerous mutagenesis studies have identified amino acid residues and protein domains of HIV-1 integras...
متن کاملDolutegravir Interactions with HIV-1 Integrase-DNA: Structural Rationale for Drug Resistance and Dissociation Kinetics
Signature HIV-1 integrase mutations associated with clinical raltegravir resistance involve 1 of 3 primary genetic pathways, Y143C/R, Q148H/K/R and N155H, the latter 2 of which confer cross-resistance to elvitegravir. In accord with clinical findings, in vitro drug resistance profiling studies with wild-type and site-directed integrase mutant viruses have shown significant fold increases in ral...
متن کاملDiscovery of a small-molecule HIV-1 integrase inhibitor-binding site.
Herein, we report the identification of a unique HIV-1 integrase (IN) inhibitor-binding site using photoaffinity labeling and mass spectrometric analysis. We chemically incorporated a photo-activatable benzophenone moiety into a series of coumarin-containing IN inhibitors. A representative of this series was covalently photo-crosslinked with the IN core domain and subjected to HPLC purification...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 268 3 شماره
صفحات -
تاریخ انتشار 1993